Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

نویسندگان

  • Tolga Kurtoglu
  • Sriram Narasimhan
  • Scott Poll
  • David Garcia
  • Stephanie Wright
چکیده

Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both modelbased and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to ar...

متن کامل

An Interactive Fuzzy Satisfying Method Based on Particle Swarm Optimization for Multi-Objective Function in Reactive Power Market

Reactive power plays an important role in supporting real power transmission, maintaining system voltages within proper limits and overall system reliability. In this paper, the production cost of reactive power, cost of the system transmission loss, investment cost of capacitor banks and absolute value of total voltage deviation (TVD) are included into the objective function of the power flow ...

متن کامل

A Mobile Robot Testbed for Prognostics-Enabled Autonomous Decision Making

The ability to utilize prognostic system health information in operational decision making, especially when fused with information about future operational, environmental, and mission requirements, is becoming desirable for both manned and unmanned aerospace vehicles. A vehicle capable of evaluating its own health state and making (or assisting the crew in making) decisions with respect to its ...

متن کامل

Qualitative Event-based Diagnosis with Possible Conflicts: Case Study on the Third International Diagnostic Competition

We describe two model-based diagnosis algorithms entered into the Third International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed in order to provide correct abort recommendations. Both diagnosis algorithms are based...

متن کامل

Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power system testbed, ADAPT, using probabilistic techniques. In the context of ADAPT, we present two challenges, regarding modelling and real-time performance, often encountered in real-world diagnostic applications. To meet the modelling ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009